

Landfill gas engine analysis

Energy lives here

Description

Landfill gas presents a unique set of challenges for engines; early detection of premature engine wear, coolant leaks and lubricant contamination is necessary for continued operation. This analysis helps you discover these issues before they can result in costly downtime or expensive repairs.

Potential benefits

Improved equipment reliability by identifying potential failures before they occur

Increased productivity through reduction of unscheduled downtime

Reduced parts replacement and labor costs

Reduced lubricant consumption and disposal with optimized drain interval

Analysis options — Landfill gas engines

	Essential	Enhanced ◆◆	Elite ◆◆◆
Chlorine		✓	√
Coolant Indicator	✓	✓	✓
Metals	✓	✓	✓
Nitration	✓	✓	✓
Oxidation	✓ ★	✓ ★	✓ ★
Particle Quantifier (PQ) Index		✓	✓
Soot	✓	✓	✓
Total Acid Number (TAN)	*	✓	✓
Total Base Number (TBN)		✓	✓
Viscosity* at 40°C or 100°C	✓	✓	
Viscosity at 40°C and 100°C			✓
Viscosity Index			√
Water Vol % Fourier transform infrared spectroscopy (FTIR)	✓	✓	
Water Vol % Karl Fischer			✓

Key

✓ Included test

TAN in lieu of oxidation for select synthetic products

*Viscosity reported at 40°C or 100°C, based on oil type or service level. Analysis may vary by laboratory, product supplied or oil condition.

Sample frequency

Sample at OEM recommended frequency or, for general guidance, begin with: **250 hours.**Adjust frequency based on asset's economic impact, operating environment, machine age, oil age or sample results trend.

Mobil Serv[™] Lubricant Analysis — Landfill gas engine analysis

Test	Ригроѕе	Importance of test	
Chlorine	To determine the level of chlorine contamination	Chlorine from landfill chlorinated fluorocarbons, in conjunction with moisture, can cause excessive metal corrosion	
Coolant Indicator	To determine the level of sodium, potassium and boron in the engine oil	Indicative of a coolant leak into the engine via a worn head gasket, cracked block or head	
Metals	To determine the presence and levels of metallic content in the oil, including contaminants and wear particles	The level of wear metals helps determine if equipment components are wearing or if harmful contamination has entered the oil. The level of metals that are part of the additive chemistry is also reported	
Nitration	To measure the amount of nitrogen by- products in the oil	Indicative of air-fuel ratio used (rich, stoichiometric, lean burn) in the combustion chamber. As a result, if unchecked, nitrogen and oxidation precursors form corrosive acid, deposit and varnishes, which may lead to reduction of the oil and engine life.	
Oxidation	To determine the level of lubricant oxidation and deterioration	Oxidation can mean: Increased wear and corrosion Shorter equipment life Increased viscosity Excessive desposits and plugging	
Particle Quantifier (PQ) Index	To determine ferrous metal fatigue failures and metal-to-metal contact not usually detectable with some spectrographic analysis	PQ Index can detect at an early stage: Anti-friction bearing wear Plain bearing wear Early indications of piston scuffing Gear wear	
Soot	To determine the soot content in an oil by percentage weight	Excessive soot contamination may mean: Decreased engine performance Excessive deposits and sludge Shorter oil life High blow-by	
Total Acid Number (TAN)	To measure acidic oil oxidation by-products	An elevated Total Acid Number may indicate increased oil acidity resulting from increased oil oxidation. AN also helps determine acid buildup due to sour gas	
Total Base Number (TBN)	To determine the reserve alkalinity of the oil used to neutralize the formation of acids	A decrease in Total Base Number may be indicative of: Oil degradation caused by rapid acid formation due to changing fuel characteristics or a high rate of oil oxidation Decreased acid-neutralizing reserve	
Viscosity	To determine the oil's resistance to flow	 An increase in viscosity may be due to high soot or insoluble content, water contamination, or admixture with higher viscosity fuel or lubricant A decrease in viscosity may be due to water contamination, or admixture with lower viscosity fuel or lubricant Both high or low viscosity may result in premature equipment wear 	
Viscosity Index	To measure the change of viscosity with temperature	Higher VI demonstrates wider operating range. Monitor for cross contamination. Monitor for viscosity shear.	
Water	To detect presence of water contamination	Water contamination may cause severe corrosion and subsequent wear, poor oil film thickness or hydrogen embrittlement	

Mobil ServSM Lubricant Analysis

When your sample is processed, the laboratory handles each bottle as a unique and important item. Each sample is coded, labeled and tracked through the entire process. By the time test results are available, your equipment sample has directly benefitted from our knowledge of Mobil™ lubricants, decades of OEM relationships and a strong heritage of hands-on application expertise. Sample comments are provided, as required, to help identify potential problems, list possible causes and recommend actions for follow-up.